


A Coexisting MIMO-Radar **MIMO-Communications Hardware Prototype**

IIII <u>Snt</u>

Mohammad Alaee-Kerahroodi, Sumit Kumar, Bhavani Shankar, Kumar Vijay Mishra, and Björn Ottersten

MIMO Radar	MIMO Comm	Co-existence 2
N element transmit and M element receive arraysTransmit orthogonal waveforms from antennas• $< x_m(t), x_n(t) > = \delta(m-n)$ • $x_n(t) : FMCW, PMCW, OFDM$ • Multiplexing in time, frequency,	N transmit and M receive antennasTransmit correlated waveforms• $x(t) = f(s(t)), s(t)$: data vector across N antennas• Linear processing: $x(t) = F s(t)$	Coexisting MIMO-radar-MIMO-comm (MRMC) desirable due to spectrum congestion • Radar and comm share the same antennas • MIMO comm crucial in millimeter-wave 5G communications • mm-wave MIMO radar beneficial for automotive applications MRMC Challenges: • High-dimensional system design • waveform multiplexing • interference management • accurately decoding of data and estimation target parameters including DoA Contributions: • Prototype of co-existence • Vehicle-to-vehicle (V2V) or point-to-point MIMO communications • Code Division Multiplexing MIMO Radar • Frame multiplexing for Radar and Communications
antenna, code $\mathbf{y}(t)$: Received Signal $= \sum_{k=1}^{K} \alpha_k e^{-j\omega_{dk}t} \mathbf{a}_r(\theta_k) \mathbf{a}_t^H(\theta_k) \mathbf{x}(t-\tau_k) + \mathbf{c}(t)$ $+ \boldsymbol{\eta}(t)$ $\mathbf{c}(t)$: Clutter, K targets $\mathbf{a}_r(\theta), \mathbf{a}_t(\theta)$: Rx/ Tx steering vectors	$\mathbf{y}(t) = \sum_{k=1}^{K} \alpha_k e^{-j\omega_{d,k}t} \mathbf{H}_k \mathbf{x}(t - \tau_k) + \mathbf{\eta}(t)$ K scatterers, \mathbf{H}_k : Channel Multipath channel	
 Receiver Processing and Performance Metrics Matched filtering, Range, Angle and Doppler processing SINR, MSE, P_D (P_{FA}) 	Receiver Processing and Performance Metrics • Frame Synchronization, Frequency Offset Correction, FFT, MAC Decode • PER	
Advantages • Performance of $M \times N$ from $M + N$ elements	Advantages • Diversity • Multiplexing	 Demonstrate co-existence and MIMO aspects Currently sub 6-GHz, plans to extend to mm-wave
Demonstration Overview 3		

Simplified block diagram of MRMC

Prototype

Block diagram of Emulation using Wired Connection

Echo Generation:

- Real-time range adjustment •
- Real-time Doppler adjustment
- Real-time angle adjustment Real-time amplitude
- adjustment
- Stochastic amplitude based on Swerling 1/2/3/4

ADC/DAC:

- Simulation of quantization error
- Signed/Un-signed

Analyzer:

- Real and Imaginary parts
 - Amplitude and Phase Spectrum
 - Spectrogram
- Ambiguity Function

Software:

.

- LabVIEW and GNU Radio
- Real-time updating of the transmit
- waveform Real-time processing

Hardware:

- NI USRP 2944
- Full duplex operation with independent TX and RX frequencies
- Two wide-bandwidth RF daughterboard slots
- Two Tx/Rx real-time channels
- PCIe Express (Desktop) 200 MS/s
- Full Duplex Bandwidth : Up to 160MHz
- bandwidth each
- Frequency: 10-6000 MHz Rx/Tx
- Configurable sample rate
- Coherent/ Phase-aligned operation

